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1 Introduction

The Riemman-Lebesgue Lemma is an important and fundamental result in the study of Fourier
analysis. The proof of the Lemma can be found in many standard real analysis text books
(see for example, [1]) for the case of Lebesgue integrable functions which is the generalization
of Riemann integrable functions. It is worthwhile mentioning that one can employ some basic
knowledge in functional analysis to obtain a simple proof of this result (see [2]). In this note,
we will prove the Lemma for the case of Riemann integrable functions.
Let us first recall the Riemann-Lebesgue Lemma.

Theorem 1.1 (Riemman-Lebesgue Lemma) Let f : R→ R be a Lebesgue integrable function.
Then we have

lim
n→∞

∫ ∞
−∞

f(x) cosnx dx = 0.

2 The proof

Recall that a function ϕ on a closed and bounded interval [a, b] is called a step function if there
is a partition a = x0 < · · · < xl = b such that ϕ is a constant ci on each (xi−1, xi). In this case,
ϕ ∈ R[a, b] and ∫ b

a
ϕ(x) dx =

l∑
i=1

ci(xi − xi−1).

Before showing the main result, we need the following lemma first.

Lemma 2.1 Let f ∈ R[a, b]. Then for any ε > 0, there is a step function ϕ on [a, b] such that
ϕ ≤ f on [a, b] and

|
∫ b

a
f −

∫ b

a
ϕ| < ε.

Proof: Let ε > 0. By using the definition of Riemann integrable function, there is a partition
P on [a, b] such that

|
∫ b

a
f(x)dx− L(f, P )| < ε,

where L(f, P ) denotes the lower sum of f with respect to the partition P : a = x0 < · · · < xl = b
over [a, b]. So, if we put ϕ(x) = inf

t∈[xi−1,xi]
f(t) for x ∈ (xi−1, xi) and ϕ(xi) := f(xi) for all

i = 1, 2, , ... then the step function ϕ is as desired. 2
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We are now to give the proof of Riemann-Lebesgue Lemma for the case of Riemann inte-
grable functions over [a, b].

Theorem 2.2 Let f be a Riemann integrable function over [a, b]. Then we have

lim
n→∞

∫ b

a
f(x) cosnx dx = 0.

Proof: Let ε > 0. Then by Lemma 2.1, one can find a step function ϕ on [a, b] with ϕ ≤ f

such that |
∫ b
a f −

∫ b
a ϕ| < ε. This implies that

|
∫ b

a
f(x) cosnx dx−

∫ b

a
ϕ(x) cosnxdx| ≤

∫ b

a
(f(x)− ϕ(x))| cosnx| dx < ε

for all n = 0, 1, 2..... Thus, it suffices to show that lim
n→∞

∫ b

a
ϕ(x) cosnx dx = 0. Now for each

non-empty subset A of R, put χA(x) ≡ 1 for x ∈ A; otherwise, is 0. If we write ϕ(x) =
l∑

i=1

ciχ[xi−1,xi)(x), where a = x0 < · · · < xl = b and ci’s are constants, then we have

|
∫ b

a
ϕ(x) cosnx dx| = |

l∑
i=1

∫ xi

xi−1

ci cosnx dx|

≤
l∑

i=1

|ci|
n
|(sinnxi − sinnxi−1)|

≤ 2
l∑

i=1

|ci|
n
→ 0

as n→∞. The proof is finished. 2

Theorem 2.3 If f is absolutely Riemann integrable over R, i.e.,
∫∞
−∞ |f(x)| dx <∞, then we

have

lim
n→∞

∫ b

a
f(x) cosnx dx = 0.

Proof: Let ε > 0. Using the Cauchy criterion, we see that the function f(x) cosnx is also
absolutely Riemann integrable over R, moreover, there is M > 0 so that∫ −M

−∞
|f(x)|| cosnx| dx+

∫ ∞
M
|f(x)|| cosnx| dx < ε

for all n = 0, 1, 2, .... Applying Theorem 2.2 for the restriction of f on [−M,M ], then there is
a positive integer N so that ∫ M

−M
|f(x)|| cosnx| dx < ε

for all n ≥ N . The proof is finished. 2
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Remark 2.4 Note that the Lebesgue integrability is equivalent to the absolutely convergence
of integrals. Therefore, we don’t need to assume

∫∞
−∞ |f(x)|dx <∞ in Theorem 2.1. However,

this is not the case for the class of Riemann integrable functions over R.
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